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Abstract
Wetting of periodically corrugated substrates is studied in the framework of
the effective interface Hamiltonian approach applied to two non-smooth sub-
strates with different convexity properties. We observe that first-order wetting
of a planar substrate induces first-order wetting of a corrugated substrate. It is
accompanied by a shift of the wetting temperature. The magnitude of this
shift is discussed analytically and numerically as a function of parameters
characterizing the corrugation when both the period and the amplitude of the
corrugation change simultaneously leading to rescaling of the substrate. Critical
wetting of the planar substrate induces critical wetting of the weakly corrugated
substrate with no shift of the wetting temperature.

1. Introduction

Wetting phenomena taking place on planar and chemically homogeneous substrates are
nowadays rather well understood and are described in many excellent reviews [1–6].
However, such perfect substrates are rare, while those encountered in practical applications
are characterized by geometrical structure and/or chemical heterogeneity. Wetting of geo-
metrically structured substrates has been the subject of recent theoretical research [7–33]. The
results are often compared with those obtained for planar substrates which serve as the natural
reference point. Another important class of substrates is formed by chemically heterogeneous
systems which in addition may be geometrically structured [34–40].

In this paper we concentrate exclusively on geometrically structured and chemically
homogeneous substrates. An important question related to wetting of such substrates is that
of finding how corrugation affects wetting. There are two aspects of this question: the first is
concerned with the order of the wetting transition on the corrugated substrate as compared to
the planar substrate case; the second is related to the possible shift of the wetting temperature
induced by corrugation. These questions have been investigated for smooth substrates often
assumed to be translationally invariant in one direction, say the y-direction, and periodically
corrugated in the x-direction. The two parameters that characterize their shapes were taken
to be the amplitude and the period of corrugation. One of the interesting conclusions [20]
obtained for such substrates is that for large enough corrugation amplitudes the continuous
wetting transition on a planar substrate turns into first-order wetting on a corrugated substrate.

0953-8984/01/214727+11$30.00 © 2001 IOP Publishing Ltd Printed in the UK 4727



4728 G P Kubalski et al

It is additionally accompanied by a shift of the wetting temperature. On the other hand, the
first-order wetting on the planar substrate remained first order on a corrugated substrate and it
was also accompanied by a shift of the wetting temperature.

In this paper we consider two different periodically corrugated substrates which are not
smooth. They are described by functions parametrized by the period of the substrate and by the
magnitude of the jump of the tangent to the substrate at certain points along the substrate. This
system is analysed in such a way that the increase of the corrugation amplitude is necessarily
accompanied by an increase of the length of the segment from which the periodic substrate is
composed. This amounts to enlarging the single unit of the periodic system in both the x- and
z-directions and we are interested in seeing how this way of modifying the substrate influences
its wetting properties. This way of rescaling the substrate is certainly different from that of
increasing the corrugation amplitude at fixed periodicity.

Our approach is of the mean-field type and is based on the effective interface Hamiltonian
[41–43] which is known to successfully describe many aspects of wetting. On the other hand,
the mean-field approach does not take into account the fluctuation effects which may influence
the wetting scenario on planar substrates leading from critical to fluctuation-induced first-order
wetting for 3D systems with short-range forces [41, 44]. This, however, requires taking into
account the position-dependent interfacial stiffness coefficient which is one of the essential
ingredients of renormalization group calculations. These fluctuation-related aspects of wetting
are absent in our analysis.

The paper is organized as follows. In section 2 we specify the system, describe the
substrate shapes and introduce the effective interface Hamiltonian. Mean-field analyses of
wetting which employ appropriate parametrization of interfacial profiles are formulated. This
leads to a system of equations for parameters characterizing the interfacial profiles and for
the corresponding values of the free energy. In section 3 we discuss these equations, both
numerically and analytically. The phase diagram is constructed. Special emphasis is put
on the sign and magnitude of the shift of the wetting temperature with respect to the planar
substrate case. Section 4 contains a summary of the results.

2. Description of the system

We consider substrates which are translationally invariant in the y-direction and periodically
corrugated in the x-direction with period 2a. Correspondingly, only periodic interfacial
configurations with the periodicity of the substrate are taken into account and it suffices
to concentrate on a single segment of the substrate, say x ∈ [−a, a]. Our discussion is
limited to two special kinds of such periodic substrates which are described by the functions
z = b1(x) = |x| cot ϕ − x2 cot ϕ/2a and z = b2(x) = x2 cot ϕ/2a, respectively; see figure 1.
Each of these functions is parametrized by two parameters: the size of the segment 2a, and
the angle ϕ which is related to the non-analyticity of substrate’s shape either at the segment’s
centre (for the first substrate) or at its end-points (for the second substrate). More precisely,
�b′

1 = b′
1(0

+) − b′
1(0

−) = 2 cot ϕ and �b′
2 = b′

2(a
+) − b′

2(a
−) = −2 cot ϕ. Note that the

parameter cot ϕ characterizes also the magnitude of the average inclination of the substrate
over half of the segment. For cot ϕ → 0 one recovers in both cases the planar substrate limit.
In the following analysis we consider substrates whose shapes do not depart too much from
the planar configuration, i.e. we consider cot ϕ � 1. This restriction excludes the possibility
of taking the limit of large corrugation amplitude at fixed periodicity considered previously in
the literature [20].

The two substrates differ in their convexity properties and we would like to see how
these geometric properties influence wetting. The thermodynamic conditions of the system
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Figure 1. A schematic plot of the substrate shapes considered in this paper. The length of the
periodically repeated segment is 2a. The parameter cot ϕ characterizes the discontinuity of the
tangent to the substrate at x = 0 for the b1-substrate (a) and at x = ±a for the b2-substrate (b).

are chosen along the coexistence line of two bulk phases denoted as α and β such that far
away from the substrate the system is in phase α while a layer of quasi-β-phase is adsorbed on
the substrate. The α–β interface is located at z = f (x) and its distance from the substrate is
denoted by l(x) = f (x) − b(x). At this stage of the analysis the cases b = b1 and b = b2 do
not need to be considered separately and the substrate shape is denoted just by b(x). One wants
to know how the position of the interface depends on temperature, and specifically one wants
to locate the temperature at which the interface detaches from the substrate, i.e. the wetting
temperature of the corrugated substrate.

Our analysis is based on the effective interface Hamiltonian

H[f ] =
∫ a

−a

dx

{
σαβ

2

(
df (x)

dx

)2

+ ω(l(x))

}
(1)

where σαβ denotes the α–β interfacial tension and ω(l) is the effective interface potential.
More precisely, the effective Hamiltonian in equation (1) describes the relative cost in free
energy of having the interface at position z = f (x) compared to the situation in which the
interface is removed infinitely far away from the substrate, i.e. H[f = ∞] = 0. The effective
potential ω(l) in (1) describes the interaction between the α–β interface and the substrate
and is taken to be of the same form as for the planar substrate case. Note that the range of
applicability of the above Hamiltonian is limited to small inclinations of the substrate with
respect to the reference plane, i.e. for cot ϕ � 1. Otherwise it would require modifications.
One of them would amount to replacing the effective potential ω(l) by

√
[1 + b′(x)

2]ω(l). The
constraint cot ϕ � 1 which reflects the range of applicability of the description based on the
effective Hamiltonian in equation (1) also limits the possible types of rescaling of the substrate
mentioned before.

The equilibrium configuration f̄ of the interface minimizes H[f ] and is obtained as the
solution of the equation

σαβ

d2f̄

dx2
= ω′(l̄) (2)

with the boundary conditions f̄ ′(0) = f̄ ′(a) = 0. For each substrate analysed, equation (2)
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can be rewritten in the following form:

σαβ

d2 l̄

dx2
= ω̃′(l̄) (3)

where

ω̃(l) = ω(l) ± lσαβ cot ϕ/a. (4)

The upper sign corresponds to substrate b1 and the lower sign corresponds to substrate b2.
In this way the structure of the substrate is encoded in the modified effective potential ω̃(l).
In equation (3) the modified effective potential ω̃(l) plays the role reserved for the potential
ω(l) in the case of the planar substrate. This rather simple encoding is possible only for
substrate shapes described by polynomials of second order. For other substrates, equation (3)
would contain x-dependent terms and its analysis would be much more complicated. Using
the language of mechanics, one would then have to analyse a non-conservative system. The
same difficulties are brought about by including the corrugation effects into the potential term
in equation (1) as mentioned just after equation (1). Note that although the modified potential
ω̃ looks like that corresponding to a system which is out of bulk coexistence, this similarity
is superficial and of no practical help. The corresponding boundary conditions take the form
l̄′(0+) = − cot ϕ, l̄′(a−) = 0 for the b1-substrate and l̄′(0+) = 0, l̄′(a−) = − cot ϕ for the
b2-substrate.

Further analysis can be simplified by transforming equation (3). This has to be done sep-
arately for each substrate. Below, we sketch this transformation for the case of the b1-substrate
while the corresponding results for the b2-substrate are just quoted at the end of this section.

Integrating (3) one obtains

σαβ

2

[(
dl̄

dx

)2

−
(

dl̄

dx

)2∣∣∣∣
x=0

]
= ω̃(l̄) − ω̃(l̄1) (5)

where l̄1 = l̄(0) and l̄2 = l̄(a). From this equation and the corresponding boundary conditions,
one concludes that

ω̃(l̄1) = ω̃(l̄2) +
σαβ

2
cot2 ϕ. (6)

This equation has to be supplemented by the constraint

a =
√

σαβ

2

∫ l̄1

l̄2

dl√
ω̃(l) − ω̃(l̄2)

(7)

which reflects the periodicity of the substrate. In this way the solutions of equation (3)
are parametrized with the help of two parameters l̄1 and l̄2 which fulfil equations (6), (7).
Finally it is the value of the Hamiltonian in equation (1) corresponding to different solutions
of equations (6), (7) which selects the equilibrium interface configuration. This Hamiltonian
can be rewritten in the following form:

H[l̄] = √
8σαβ

∫ l̄1

l̄2

dl

[√
ω̃(l) − ω̃(l̄2) −

√
σαβ

2
cot ϕ

]
+ 2aω(l̄2) +

σαβ

3
a cot2 ϕ. (8)

Similar analysis leads in the case of the b2-substrate to the following set of equations:

ω̃(l̄1) = ω̃(l̄2) − σαβ

2
cot2 ϕ (9)

a =
√

σαβ

2

∫ l̄1

l̄2

dl√
ω̃(l) − ω̃(l̄1)

(10)
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H[l̄] = √
8σαβ

∫ l̄1

l̄2

dl

[√
ω̃(l) − ω̃(l̄1) −

√
σαβ

2
cot ϕ

]
+ 2aω(l̄1) +

σαβ

3
a cot2 ϕ. (11)

Each set of equations, i.e. equations (6)–(8) or equations (9)–(11), has to be supplemented with
the specific form of the effective interface potential ω(l). It corresponds either to a first-order
or to a critical wetting transition on a planar substrate. Then equations (6), (7) (or equations
(9), (10)) are solved and the parameters l̄1, l̄2 are determined. Each solution corresponds to
a certain interfacial configuration and the equilibrium configuration is chosen as the one with
the smallest value of the free energy in equation (8) or equation (11). This procedure is then
repeated for various temperatures and various values of the parameters a and cot ϕ. In this
way the mean-field phase diagram is constructed.

Alternatively one may analyse this problem with the help of two auxiliary functions F(l2)

and A(l2) defined (for the b1-substrate) in the following way:

F(l2) = √
8σαβ

∫ l1

l2

dl

[√
ω̃(l) − ω̃(l2) −

√
σαβ

2
cot ϕ

]
+ 2aω(l2) +

σαβ

3
a cot2 ϕ (12)

A(l2) =
√

σαβ

2

∫ l1

l2

dl√
ω̃(l) − ω̃(l2)

(13)

where the parameter l1 is determined as a function of l2 by solving

ω̃(l1) = ω̃(l2) +
σαβ

2
cot2 ϕ. (14)

Note that A(l̄2) = a is the necessary condition for a local minimum of F(l̄2). Straightforward
calculation shows that

dF(l2)

dl2
= 2ω̃′(l2) [a − A(l2)] . (15)

Thus, alternatively to previous procedures, the equilibrium configurations and the sought-for
phase diagram may be obtained as solutions minimizing F(l2), i.e. solutions of the equation
A(l̄2) = a. A similar set of equations holds also for the second substrate. This turns out to be
a very effective way of obtaining the phase diagram and we employ it in our analysis.

3. Phase diagram

3.1. The first-order transition

We begin with the effective interface potential ω(l) which corresponds to the first-order wetting
on a flat substrate. It is chosen in the following dimensionless form [27, 41, 43]:

ω(l)/σαβ = At exp(−l/ξβ) + B[1 − Ct2l/ξβ] exp(−2l/ξβ) (16)

which corresponds to a system with short-range forces [27, 41]. The parameter t is taken as
t = (T0 − T )/T0, where T0 is larger than the first-order wetting temperature T π

w for a flat
substrate and depends on the parameters A, B and C. The parameter ξβ denotes the bulk
correlation length in phase β. The calculations are done for A = 2, B = 1/3, C = 10. For
this choice, T0 = 1.451T π

w .
For each substrate the procedure described at the end of section 2 can be implemented

only numerically. The resulting phase diagram is shown in figure 2.
Two phases represented on this diagram correspond to finite and to infinite thickness of

the adsorbed β-like layer; we call them the non-wet and wet phase, respectively. In the wet
phase both l̄1 and l̄2 are infinite. In the non-wet phase the layer thickness varies between finite
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Figure 2. A schematic phase diagram for the first-order wetting transition in the variables
temperature T and periodicity a for cot ϕ � 1. The coexistence curves evaluated for the two cases
practically coincide and are denoted by a single thick line. For a/ξβ → ∞—which corresponds
to enlarging the periodic unit—the coexistence lines approach the asymptote T = T (∞, ϕ) which
is shifted from the planar substrate wetting temperature T π

w by a distance proportional to cot2 ϕ.
For small values of a, both coexistence curves tend to T π

w .

l̄2 and l̄1 which both depend on t and a. The transition between these two phases is first order.
Thus for the effective potential ω(l) given in equation (16), one observes—for both types of
substrate—no change of the order of the wetting transition as compared to the planar substrate
case. This first-order transition takes place upon crossing the coexistence line T = T i

w(a, ϕ),
i = 1, 2, whose forms are identical (up to numerical accuracy) for the two substrates. In
each case, T i

w(a, ϕ) < T π
w , which means that wetting of a corrugated substrate takes place at

an absolute temperature which is lower than the wetting temperature of the planar substrate.
This fact can be qualitatively understood by examining the effective interface Hamiltonian
in equation (1). At the first-order transition point the free energy of the finite, non-planar
configuration of the interface is equal to the free energy of the infinite solution, which is zero.
For the finite solution the positive contribution corresponding to the gradient squared term
has to be balanced by a negative contribution from the interface potential ω(l). This negative
contribution from the interface potential is possible only for T < T π

w . In the appendix we
present analytical arguments showing that for the b1-substrate one should expect the same
order of wetting transition as for the planar substrate.

In the limit a/ξβ → ∞, the two coexistence lines approach the same asymptote
T = T (∞, ϕ). Its position depends on the angle ϕ and in the limit ϕ = π/2 it coincides
with the wetting point of the planar substrate, i.e. T (∞, ϕ) → T π

w for cot ϕ → 0. Of course,
this behaviour of the coexistence line is expected, because for ϕ = π/2 both substrates become
planar, i.e. b1(x) = b2(x) = 0.

The asymptotic behaviour of the coexistence line can be—for both substrates—derived
analytically in the limit of large a and small cot ϕ. Since the derivations are very similar for
the two substrates, we present that for the b1-substrate and then just quote and comment on
the results for the other substrate.

We know from numerical analysis that in the case of large a and small cot ϕ the equilibrium
values of l̄1 and l̄2 in the non-wet situation at a given temperature are close to each other and
close to the corresponding value of the width lπ of the wetting layer on the planar substrate. The
width lπ is determined as a solution of the equation ω′(lπ ) = 0. We also note that ω′′(lπ ) > 0
and that, upon approaching the wetting temperature of the planar substrate, ω(lπ ) → 0 from
below. The quantity ω′′(lπ ) can be conveniently rewritten as ω′′(lπ ) = σαβξ‖−2 and the
correlation length ξ‖ sets the length scale in the consideration below. For the case of first-order
wetting this quantity remains finite, unlike in the second-order wetting case where it becomes
infinite at the transition point.
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In order to solve equations (6), (7) one expands ω̃(l̄i ), i = 1, 2, around lπ up to the second-
order terms in l̄i − lπ . For small values of the difference l̄1 − l̄2, the integral on the right-hand
side of equation (7)—although diverging in the limit a → ∞—can be evaluated by expanding
the argument of the square root in the denominator around lπ up to the second-order terms and
then integrating. In this way one obtains the following solution:

(l̄1 − l̄2)/ξ‖ = cot ϕ
[
1 − exp(−a/ξ‖)/2 + · · ·] (17)

(l̄2 − l̄π )/ξ‖ = − cot ϕ
[
ξ‖/a − exp(−a/ξ‖)/2 · · ·] (18)

where dots denote terms which are higher order in cot ϕ, ξ‖/a, or in exp(−a/ξ‖). Note that in
the limit a = ∞ one obtains l̄2 = lπ and l̄1 �= l̄2. Only after taking the limit cot ϕ = 0 does
one get l̄1 = l̄2 = lπ . In order to find the first-order wetting temperature, the expressions in
equations (17), (18) are substituted into equation (8) and the corresponding value of the free
energy is set equal to the value of the free energy corresponding to the wetting configuration.
This is equal to zero—see equation (1) and the following remarks. In this way one obtains the
following equation:

ω(lπ )/σαβ = −1

6
cot2 ϕ

[
1 − 3

ξ‖
a

+ · · ·
]

. (19)

Note that ω(lπ ) in the above equation depends on temperature both explicitly—see equation
(16)—and implicitly via lπ . After expanding ω(lπ ) around T π

w one obtains, to leading order
in ξ‖/a,

T 1
w(a, ϕ) = T π

w − σαβ

6|ωt | cot2 ϕ

[
1 − 3

ξ‖
a

+ · · ·
]

(20)

where dots denote higher-order terms, as before. The symbol ωt denotes the partial derivative
of ω with respect to t evaluated at the planar substrate wetting temperature; note that ωt < 0.
An identical expression for the asymptotic behaviour of the coexistence line is obtained also for
the second substrate. Thus, to leading order, the asymptotic behaviours of the two coexistence
lines are the same, which is also confirmed by numerical results. We note that the shift
of the asymptotic temperature Tw(∞, ϕ) (the same for both substrates) with respect to the
corresponding planar substrate wetting temperatureT π

w is proportional to cot2 ϕ. The same kind
of behaviour is observed for the shift of the filling temperature in an infinite wedge with opening
angle 2ϕ [26, 27] with respect to the corresponding planar substrate wetting temperature T π

w .
In the opposite limit a/ξβ → 0, our numerical results show that T i

w(a, ϕ) → T π
w . Again it

can be checked analytically for both substrates that in this limit T π
w − T i

w(a, ϕ) ∼ a2 cot2 ϕ.
These properties of T i

w(a, ϕ) are depicted in figure 2.

3.2. The continuous transition

In the case of the critical wetting transition on a planar substrate, the effective potential ω(l)

has the following dimensionless form:

ω(l)/σαβ = At exp(−l/ξβ) + B exp(−2l/ξβ) (21)

where t denotes the dimensionless deviation from the planar substrate wetting temperature,
i.e. t = (T π

w −T )/T π
w , and the parameters A and B are taken as A = −1, B = 1. The effective

potential ω(l) in equation (21) corresponds to a system with short-range forces [41, 43]. This
potential is inserted into equations (6)–(8) which are then analysed numerically for different
values of the parameters t , a and cot ϕ, similarly to in the preceding subsection. This analysis
shows that depending on the values of t and a, the system is either in the non-wet or in the wet
phase and the transition between these two phases is continuous. The numerically determined
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transition line turns out to be very simple: independently of the values of the parameters a and
ϕ (provided that cot ϕ � 1), it coincides with T π

w . Thus, in contrast to the results obtained
above for the first-order transition, we observe no shift of the continuous transition with respect
to the planar substrate case. This is true for both kinds of substrate. Our results do not confirm
the conclusions reported in [20], where it is shown that for large enough corrugation amplitudes
the continuous transition on a planar substrate turns into the first-order transition. This however
should not be considered as a contradiction. Our method of analysis remains valid only for
small substrate corrugation and thus the parameter cot ϕ must be kept small. This precludes
the possibility of analysing systems with increasing corrugation amplitude at fixed periodicity.

4. Conclusions

We have analysed the wetting of two corrugated and non-smooth substrates. Each of them
was translationally invariant in the y-direction and periodic with period 2a in the x-direction.
Within each segment x ∈ [−a, a], each substrate was described by a second-order polynomial
in x. One of them was concave and the other was convex. Functions describing the substrates
were—in addition to a—parametrized by cot ϕ measuring the discontinuity of the tangent
to the substrate either at the centre of this segment or at its ends. The parameter cot ϕ also
measured the deviation of the substrate from planarity. The interfacial configurations were
assumed to have the periodicity of the substrate and so one could analyse just a single segment
of the substrate. Our mean-field analysis was based on the effective interface Hamiltonian.
The interfacial configurations were parametrized by two parameters relating to the width of the
adsorbed layer at the centre of the segment and the width at the end of the segment. In addition to
considering two types of substrate, we also considered effective potentials corresponding either
to first-order or to continuous wetting on a planar substrate. The effective potentials which we
have chosen were of rather general type and are frequently used in the literature. Thus we had
to consider four cases depending on the type of substrate and the type of potential. In each
of these four cases the set of equations leading to the equilibrium configuration was analysed
numerically for different values of the temperature and different values of the parameters a

and cot ϕ.
We conclude that within the range of parameters considered, the order of the wetting

transition does not change on going from a planar to a corrugated substrate. In the case
of continuous wetting, the value of the wetting temperature does not change as compared
to the planar substrate case. This is not true for the first-order transition. In this case the
wetting temperature is shifted towards smaller values. The shift from the planar substrate
wetting temperature depends on both substrate parameters, i.e. on a and cot ϕ, and is (up to
numerical accuracy) the same for the two substrates. At fixed value of cot ϕ, this shift increases
monotonically with a. The asymptotic behaviour of the first-order wetting temperature is such
that for a/ξβ → ∞ it tends to a certain cot ϕ-dependent value and its distance from this
value decreases proportionally to 1/a. On the other hand, for a/ξβ → 0 the difference
between the wetting temperature of the corrugated substrate and the planar substrate wetting
temperature is decreasing proportionally to a2 cot2 ϕ. Our results do not indicate any very
substantial influence of substrate convexity on the wetting behaviour. Such an influence has
been observed within the macroscopic description of adsorption on corrugated substrates with
different convexity properties [23]. We think that the mesoscopic description adopted in this
paper may also detect such an influence provided that the effective interface Hamiltonian takes
a more complete account of the substrate corrugation than the one employed in the present
analysis. This, however, requires a systematic derivation of such an effective Hamiltonian
from a more fundamental theory of adsorption on a corrugated substrate.
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It should be stressed that, although the effective potentials employed in our analysis are
of general type, the substrates are rather specific, described by second-order polynomials,
and are non-smooth. Thus an open question remains as regards to what extent these results
remain valid for other types of substrate and what the generic properties of substrates are that
determine whether the possible change of order of the wetting transition as compared to the
planar case occurs.
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Appendix

In this appendix we argue that the order of the wetting transition taking place on the b1-substrate
is the same as that of the one occurring on the corresponding planar substrate. The argument
does not apply to the case of the b2-substrate.

In our analysis we employ equations (12)–(15). It follows from equation (15) that the
equilibrium interface configuration fulfils the condition A(l2) = a. Accordingly, this equation
will be used to find the equilibrium interface configuration and to see how it evolves upon
increasing the temperature.

We start with critical wetting on a planar substrate. In this case the effective potential
ω(l) is given in equation (21) and the integral on the right-hand side of equation (13) can be
rewritten in the following way:

A(l2) =
√

σαβ

2

∫ ω̃1

ω̃2

dω̃
l′(ω̃)√
ω̃ − ω̃2

(A.1)

where ω̃i = ω̃(li), i = 1, 2, and ω̃1 = ω̃2 + σαβ/2 cot2 ϕ. This change of variables in the
integral is legitimate because we consider cases where l2 > l0, where l0 corresponds to the
minimum of ω̃(l). In this range, ω̃(l) is an increasing function of l. The inverse function l(ω̃)

exists and its derivative is present in equation (A.1). We note that A(l2) → ∞ for l2 → l0 and
A(l2) → a for l2 → ∞. In order to find the behaviour of A(l2) for intermediate values of l2,
it is helpful to analyse the derivative A′(l2):

dA(l2)

dl2
= ω̃′(l2)

√
σαβ

2

∫ ω̃1

ω̃2

dω̃
l′′(ω̃)√
ω̃ − ω̃2

. (A.2)

The sign of the second derivative l′′(ω̃) depends on the value of l; it is negative for l0 � l < linf
and positive for l > linf , where linf denotes the inflection point of ω̃(l), i.e. ω̃′′(linf ) = 0.
On the other hand, the derivative ω̃′(l) is positive for l > l0. The above facts lead to the
conclusion that A(l2) is a non-monotonic function of l2 and has a single minimum. It is
presented schematically in figure A1. We see that there is only single finite value of l2, say l̄2,
at which A(l̄2) = a. This value grows continuously to ∞ for T → T π

w . The corresponding
free energy is always smaller than the free energy of the infinite, i.e. the wetting, solution.

Similar analysis can be performed for the effective potential ω(l) corresponding to the
first-order wetting on a planar substrate; see equation (16). In this case the potential ω̃(l)

has—depending on the values of the temperature and the parameters a and cot ϕ—either one
or two minima and it always has two inflection points, similarly to ω(l). The plot of A(l2)
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Figure A1. A schematic plot of the function A(l2) in the case of a critical wetting transition
on a planar substrate. The point at which A = a is denoted by a thick dot and corresponds to
an equilibrium finite value of the parameter l2 characterizing the thickness of the adsorbed layer.
Upon increasing the temperature towards the planar substrate wetting temperature, this point is
continuously shifted towards ∞.

consists of three branches corresponding to different ranges of l2-values. Similarly to before,
one is interested in values of l2 for which A(l2) = a. Such values of l2 corresponding to the first
two branches remain finite independently of the temperature. The third branch corresponds to
the largest values of l2 and for these values A(l2) is a monotonically decreasing function; the
condition A(l2) = a is fulfilled only by l2 = ∞. Thus there is no possibility of continuous
increase of the finite solution of equation A(l2) = a to ∞ upon increasing the temperature.
Thus the transition must be first order and corresponds to a discontinuity of l2.
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